17 research outputs found

    Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture

    Get PDF
    Single walled carbon nanotubes (SWCNT) find their way in various industrial applications. Due to the expected increased production of various carbon nanotubes and nanoparticle containing products, exposure to engineered nanoparticles will also increase dramatically in parallel. In this study the effects of SWCNT raw material and purified SWCNT (SWCNT bundles) on cell behaviour of mesothelioma cells (MSTO-211H) and on epithelial cells (A549) had been investigated. The effect on cell behaviour (cell proliferation, cell activity, cytoskeleton organization, apoptosis and cell adhesion) were dependent on cell type, SWCNT quality (purified or not) and SWCNT concentratio

    Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human placental perfusion model

    Get PDF
    BACKGROUND: Nanoparticle exposure in utero might not be a major concern yet, but it could become more important with the increasing application of nanomaterials in consumer and medical products. Several epidemiologic and in vitro studies have shown that nanoparticles can have potential toxic effects. However, nanoparticles also offer the opportunity to develop new therapeutic strategies to treat specifically either the pregnant mother or the fetus. Previous studies mainly addressed whether nanoparticles are able to cross the placental barrier. However, the transport mechanisms underlying nanoparticle translocation across the placenta are still unknown. OBJECTIVES: In this study we examined which transport mechanisms underlie the placental transfer of nanoparticles. METHODS: We used the ex vivo human placental perfusion model to analyze the bidirectional transfer of plain and carboxylate modified polystyrene particles in a size range between 50 and 300 nm. RESULTS: We observed that the transport of polystyrene particles in the fetal to maternal direction was significantly higher than for the maternal to fetal direction. Regardless of their ability to cross the placental barrier and the direction of perfusion, all polystyrene particles accumulated in the syncytiotrophoblast of the placental tissue. CONCLUSIONS: Our results indicate that the syncytiotrophoblast is the key player in regulating nanoparticle transport across the human placenta. The main mechanism underlying this translocation is not based on passive diffusion, but is likely to involve an active, energy-dependent transport pathway. These findings will be important for reproductive toxicology as well as for pharmaceutical engineering of new drug carriers. CITATION: Grafmueller S, Manser P, Diener L, Diener PA, Maeder-Althaus X, Maurizi L, Jochum W, Krug HF, Buerki-Thurnherr T, von Mandach U, Wick P. 2015. Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human placental perfusion model. Environ Health Perspect 123:1280-1286; http://dx.doi.org/10.1289/ehp.1409271

    Translocation of silver nanoparticles in the ex vivo human placenta perfusion model characterized by single particle ICP-MS

    Get PDF
    With the extensive use of silver nanoparticles (AgNPs) in various consumer products their potential toxicity is of great concern especially for highly sensitive population groups such as pregnant women and even the developing fetus. To understand if AgNPs are taken up and cross the human placenta, we studied their translocation and accumulation in the human ex vivo placenta perfusion model by single particle ICP-MS (spICP-MS). The impact of different surface modifications on placental transfer was assessed by AgNPs with two different modifications: polyethylene glycol (AgPEG NPs) and sodium carboxylate (AgCOONa NPs). AgNPs and ionic Ag were detected in the fetal circulation in low but not negligible amounts. Slightly higher Ag translocation across the placental barrier for perfusion with AgPEG NPs and higher AgNP accumulation in placental tissue for perfusion with AgCOONa NPs were observed. Since these AgNPs are soluble in water, we tried to distinguish between the translocation of dissolved and particulate Ag. Perfusion with AgNO3 revealed the formation of Ag containing NPs in both circulations over time, of which the amount and their size in the fetal circulation were comparable to those from perfusion experiments with both AgNP types. Although we were not able to clarify whether intact AgNPs and/or Ag precipitates from dissolved Ag cross the placental barrier, our study highlights that uptake of Ag ions and/or dissolution of AgNPs in the tissue followed by re-precipitation in the fetal circulation needs to be considered as an important pathway in studies of AgNP translocation across biological barriers

    Translocation of silver nanoparticles in the ex vivo human placenta perfusion model characterized by single particle ICP-MS

    Get PDF
    With the extensive use of silver nanoparticles (AgNPs) in various consumer products their potential toxicity is of great concern especially for highly sensitive population groups such as pregnant women and even the developing fetus. To understand if AgNPs are taken up and cross the human placenta, we studied their translocation and accumulation in the human ex vivo placenta perfusion model by single particle ICP-MS (spICP-MS). The impact of different surface modifications on placental transfer was assessed by AgNPs with two different modifications: polyethylene glycol (AgPEG NPs) and sodium carboxylate (AgCOONa NPs). AgNPs and ionic Ag were detected in the fetal circulation in low but not negligible amounts. Slightly higher Ag translocation across the placental barrier for perfusion with AgPEG NPs and higher AgNP accumulation in placental tissue for perfusion with AgCOONa NPs were observed. Since these AgNPs are soluble in water, we tried to distinguish between the translocation of dissolved and particulate Ag. Perfusion with AgNO3 revealed the formation of Ag containing NPs in both circulations over time, of which the amount and their size in the fetal circulation were comparable to those from perfusion experiments with both AgNP types. Although we were not able to clarify whether intact AgNPs and/or Ag precipitates from dissolved Ag cross the placental barrier, our study highlights that uptake of Ag ions and/or dissolution of AgNPs in the tissue followed by re-precipitation in the fetal circulation needs to be considered as an important pathway in studies of AgNP translocation across biological barriers

    Determination of the transport rate of xenobiotics and nanomaterials across the placenta using the ex vivo human placental perfusion model

    Full text link
    Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ (1). Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 (2) and continuously modified by Schneider et al. in 1972 (3), can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data

    A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro

    No full text
    The close resemblance of carbon nanotubes to asbestos fibers regarding their high aspect ratio, biopersistence and reactivity increases public concerns on the widespread use of these materials. The purpose of this study was not only to address the acute adverse effects of industrially produced multiwalled carbon nanotubes (MWCNTs) on human lung and immune cells in vitro but also to further understand if their accumulation and biopersistence leads to long-term consequences or induces adaptive changes in these cells. In contrast to asbestos fibers, pristine MWCNTs did not induce overt cell death in A549 lung epithelial cells and Jurkat T lymphocytes after acute exposure to high doses of this material (up to 30 g/ml). Nevertheless, very high levels of reactive oxygen species (ROS) and decreased metabolic activity were observed which might affect long-term viability of these cells. However, the continuous presence of low amounts of MWCNTs (0.5 g/ml) for 6 months did not have major adverse long-term effects although large amounts of nanotubes accumulated at least in A549 cells. Moreover, MWCNTs did not appear to induce adaptive mechanisms against particle stress in long-term treated A549 cells. Our study demonstrates that despite the high potential for ROS formation, pristine MWCNTs can accumulate and persist within cells without having major long-term consequences or inducing adaptive mechanisms
    corecore